DAO Style Guidelines and Best Practices
A Data Access Object (DAO) is a pattern that provides an abstract interface to the SQLAlchemy Object Relational Mapper (ORM). The DAOs are critical as they form the building block of the application which are wrapped by the associated commands and RESTful API endpoints.
Currently there are numerous inconsistencies and violation of the DRY principal within the codebase as it relates to DAOs and ORMs—unnecessary commits, non-ACID transactions, etc.—which makes the code unnecessarily complex and convoluted. Addressing the underlying issues with the DAOs should help simplify the downstream operations and improve the developer experience.
To ensure consistency the following rules should be adhered to:
-
All database operations (including testing) should be defined within a DAO, i.e., there should not be any explicit
db.session.add
,db.session.merge
, etc. calls outside of a DAO. -
A DAO should use
create
,update
,delete
,upsert
terms—typical database operations which ensure consistency with commands—rather than action based terms likesave
,saveas
,override
, etc. -
Sessions should be managed via a context manager which auto-commits on success and rolls back on failure, i.e., there should be no explicit
db.session.commit
ordb.session.rollback
calls within the DAO. -
There should be a single atomic transaction representing the entirety of the operation, i.e., when creating a dataset with associated columns and metrics either all the changes succeed when the transaction is committed, or all the changes are undone when the transaction is rolled back. SQLAlchemy supports nested transactions via the
begin_nested
method which can be nested—inline with how DAOs are invoked. -
The database layer should adopt a "shift left" mentality i.e., uniqueness/foreign key constraints, relationships, cascades, etc. should all be defined in the database layer rather than being enforced in the application layer.
DAO Implementation Examples
Basic DAO Structure
from typing import List, Optional, Dict, Any
from sqlalchemy.orm import Session
from superset.extensions import db
from superset.models.dashboard import Dashboard
class DashboardDAO:
"""Data Access Object for Dashboard operations"""
@classmethod
def find_by_id(cls, dashboard_id: int) -> Optional[Dashboard]:
"""Find dashboard by ID"""
return db.session.query(Dashboard).filter_by(id=dashboard_id).first()
@classmethod
def find_by_ids(cls, dashboard_ids: List[int]) -> List[Dashboard]:
"""Find dashboards by list of IDs"""
return db.session.query(Dashboard).filter(
Dashboard.id.in_(dashboard_ids)
).all()
@classmethod
def create(cls, properties: Dict[str, Any]) -> Dashboard:
"""Create a new dashboard"""
with db.session.begin():
dashboard = Dashboard(**properties)
db.session.add(dashboard)
db.session.flush() # Get the ID
return dashboard
@classmethod
def update(cls, dashboard: Dashboard, properties: Dict[str, Any]) -> Dashboard:
"""Update an existing dashboard"""
with db.session.begin():
for key, value in properties.items():
setattr(dashboard, key, value)
return dashboard
@classmethod
def delete(cls, dashboard: Dashboard) -> None:
"""Delete a dashboard"""
with db.session.begin():
db.session.delete(dashboard)
Complex DAO Operations
class DatasetDAO:
"""Data Access Object for Dataset operations"""
@classmethod
def create_with_columns_and_metrics(
cls,
dataset_properties: Dict[str, Any],
columns: List[Dict[str, Any]],
metrics: List[Dict[str, Any]]
) -> Dataset:
"""Create dataset with associated columns and metrics atomically"""
with db.session.begin():
# Create the dataset
dataset = Dataset(**dataset_properties)
db.session.add(dataset)
db.session.flush() # Get the dataset ID
# Create columns
for column_props in columns:
column_props['dataset_id'] = dataset.id
column = TableColumn(**column_props)
db.session.add(column)
# Create metrics
for metric_props in metrics:
metric_props['dataset_id'] = dataset.id
metric = SqlMetric(**metric_props)
db.session.add(metric)
return dataset
@classmethod
def bulk_delete(cls, dataset_ids: List[int]) -> int:
"""Delete multiple datasets and return count"""
with db.session.begin():
count = db.session.query(Dataset).filter(
Dataset.id.in_(dataset_ids)
).delete(synchronize_session=False)
return count
Query Methods
class DashboardDAO:
@classmethod
def find_by_slug(cls, slug: str) -> Optional[Dashboard]:
"""Find dashboard by slug"""
return db.session.query(Dashboard).filter_by(slug=slug).first()
@classmethod
def find_by_owner(cls, owner_id: int) -> List[Dashboard]:
"""Find all dashboards owned by a user"""
return db.session.query(Dashboard).filter_by(
created_by_fk=owner_id
).all()
@classmethod
def search(
cls,
query: str,
page: int = 0,
page_size: int = 25
) -> Tuple[List[Dashboard], int]:
"""Search dashboards with pagination"""
base_query = db.session.query(Dashboard).filter(
Dashboard.dashboard_title.ilike(f"%{query}%")
)
total_count = base_query.count()
dashboards = base_query.offset(page * page_size).limit(page_size).all()
return dashboards, total_count
Error Handling in DAOs
from sqlalchemy.exc import IntegrityError
from superset.exceptions import DAOCreateFailedError, DAODeleteFailedError
class DashboardDAO:
@classmethod
def create(cls, properties: Dict[str, Any]) -> Dashboard:
"""Create a new dashboard with error handling"""
try:
with db.session.begin():
dashboard = Dashboard(**properties)
db.session.add(dashboard)
db.session.flush()
return dashboard
except IntegrityError as ex:
raise DAOCreateFailedError(str(ex)) from ex
@classmethod
def delete(cls, dashboard: Dashboard) -> None:
"""Delete a dashboard with error handling"""
try:
with db.session.begin():
db.session.delete(dashboard)
except IntegrityError as ex:
raise DAODeleteFailedError(
f"Cannot delete dashboard {dashboard.id}: {str(ex)}"
) from ex
Best Practices
1. Use Class Methods
All DAO methods should be class methods (@classmethod
) rather than instance methods:
# ✅ Good
class DashboardDAO:
@classmethod
def find_by_id(cls, dashboard_id: int) -> Optional[Dashboard]:
return db.session.query(Dashboard).filter_by(id=dashboard_id).first()
# ❌ Avoid
class DashboardDAO:
def find_by_id(self, dashboard_id: int) -> Optional[Dashboard]:
return db.session.query(Dashboard).filter_by(id=dashboard_id).first()
2. Use Context Managers for Transactions
Always use context managers to ensure proper transaction handling:
# ✅ Good - automatic commit/rollback
@classmethod
def create(cls, properties: Dict[str, Any]) -> Dashboard:
with db.session.begin():
dashboard = Dashboard(**properties)
db.session.add(dashboard)
return dashboard
# ❌ Avoid - manual commit/rollback
@classmethod
def create(cls, properties: Dict[str, Any]) -> Dashboard:
try:
dashboard = Dashboard(**properties)
db.session.add(dashboard)
db.session.commit()
return dashboard
except Exception:
db.session.rollback()
raise
3. Use Descriptive Method Names
Method names should clearly indicate the operation:
# ✅ Good - clear CRUD operations
create()
update()
delete()
find_by_id()
find_by_slug()
# ❌ Avoid - ambiguous names
save()
remove()
get()
4. Type Hints
Always include type hints for parameters and return values:
@classmethod
def find_by_ids(cls, dashboard_ids: List[int]) -> List[Dashboard]:
"""Find dashboards by list of IDs"""
return db.session.query(Dashboard).filter(
Dashboard.id.in_(dashboard_ids)
).all()
5. Batch Operations
Provide efficient batch operations when needed:
@classmethod
def bulk_update_published_status(
cls,
dashboard_ids: List[int],
published: bool
) -> int:
"""Update published status for multiple dashboards"""
with db.session.begin():
count = db.session.query(Dashboard).filter(
Dashboard.id.in_(dashboard_ids)
).update(
{Dashboard.published: published},
synchronize_session=False
)
return count
Testing DAOs
Unit Tests for DAOs
import pytest
from superset.dashboards.dao import DashboardDAO
from superset.models.dashboard import Dashboard
def test_dashboard_create(session):
"""Test creating a dashboard"""
properties = {
"dashboard_title": "Test Dashboard",
"slug": "test-dashboard"
}
dashboard = DashboardDAO.create(properties)
assert dashboard.id is not None
assert dashboard.dashboard_title == "Test Dashboard"
assert dashboard.slug == "test-dashboard"
def test_dashboard_find_by_slug(session):
"""Test finding dashboard by slug"""
# Create test data
dashboard = Dashboard(
dashboard_title="Test Dashboard",
slug="test-dashboard"
)
session.add(dashboard)
session.commit()
# Test the DAO method
found_dashboard = DashboardDAO.find_by_slug("test-dashboard")
assert found_dashboard is not None
assert found_dashboard.dashboard_title == "Test Dashboard"
def test_dashboard_delete(session):
"""Test deleting a dashboard"""
dashboard = Dashboard(dashboard_title="Test Dashboard")
session.add(dashboard)
session.commit()
dashboard_id = dashboard.id
DashboardDAO.delete(dashboard)
deleted_dashboard = DashboardDAO.find_by_id(dashboard_id)
assert deleted_dashboard is None
Integration Tests
def test_create_dataset_with_columns_atomic(app_context):
"""Test that creating dataset with columns is atomic"""
dataset_properties = {"table_name": "test_table"}
columns = [{"column_name": "col1"}, {"column_name": "col2"}]
# This should succeed completely or fail completely
dataset = DatasetDAO.create_with_columns_and_metrics(
dataset_properties, columns, []
)
assert dataset.id is not None
assert len(dataset.columns) == 2